ECE 212: Electromagnetic Fundamentals

Sheet 11

(1) Determine the magnetic flux density of a straight current filament of length L and current intensity I.
(2) Determine the magnetic flux density at any point on the axis of a circular current loop of radius \boldsymbol{a} flown by current I.
(3) Determine the magnetic flux density at a point P of a straight pieces of current carrying wire shown in the figure of length L, and a current carrying semi-circle of radius $\boldsymbol{a}=5 \mathrm{~cm}$ for $\mathbf{I}=2 \mathrm{~A}$.

(4) a) A filament is formed into a circle of radius \boldsymbol{a}, centered at the origin in the plane $\mathrm{z}=0$. It carries a current I in the a_{φ} direction. Find H at the origin.
b) A filament of the same length is shaped into a square in the $\mathrm{z}=0$ plane. The sides are parallel to the coordinate axes and a current I flows in the general a_{φ} direction. Again, find H at the origin.
(5) Let a filamentary current of 5 mA be directed from infinity to the origin on the positive z axis and then back out to infinity on the positive x axis. Find: H at $\mathrm{M}(0$, $1,0)$
(6) a) Find H in Cartesian components at $\mathrm{P}(2,3,4)$ if there is a current filament on the z axis carrying 8 mA in the a_{z} direction.
b) Repeat if the filament is located at $\mathrm{x}=-1, \mathrm{y}=2$.
c) Find H if both filaments are present
(7) An infinite filament on the z axis carries $20 \pi \mathrm{~mA}$ in the a_{z} direction. Three $\mathrm{a}_{\mathrm{z}}{ }^{-}$ directed uniform cylindrical current sheets are also present: $400 \mathrm{~mA} / \mathrm{m}$ at $\rho=1 \mathrm{~cm}$,

ECE 212: Electromagnetic Fundamentals
$-250 \mathrm{~mA} / \mathrm{m}$ at $\rho=2 \mathrm{~cm}$ and $-300 \mathrm{~mA} / \mathrm{m}$ at $\rho=3 \mathrm{~cm}$. Calculate H at $\rho=0.5,1.5,2.5$, and 3.5 cm .
(8) The cylindrical shell, $2 \mathrm{~mm}<\rho<3 \mathrm{~mm}$, carries a uniformly-distributed total current of 8 A in the $-a_{\mathrm{z}}$ direction, and a filament on the z axis carries 8 A in the a_{z} direction. Find H everywhere
(9) A conducting filament at $\rho=0$ carries 12 A in the a_{z} direction. Let $\mu_{\mathrm{r}}=1$ for $\rho<$ $1 \mathrm{~cm}, \mu_{\mathrm{r}}=6$ for $1<\rho<2 \mathrm{~cm}$, and $\mu_{\mathrm{r}}=1$ for $\rho>2 \mathrm{~cm}$. Find
a) Heverywhere
b) B everywhere
(10) Point $P(2,3,1)$ lies on the planar boundary separating region 1 from region 2. The unit vector $\mathrm{a}_{\mathrm{N} 12}=0.6 \mathrm{a}_{\mathrm{x}}+0.48 \mathrm{a}_{\mathrm{y}}+0.64 \mathrm{a}_{\mathrm{z}}$ is directed from region 1 to region 2. Let $\mu_{\mathrm{r} 1}=2, \mu_{\mathrm{r} 2}=8$ and $\mathrm{H}_{1}=100 \mathrm{ax}-300 \mathrm{ay}+200 \mathrm{az} \mathrm{A} / \mathrm{m}$. Find H_{2}
(11) Let $\mu_{\mathrm{r} 1}=2$ in region 1 , defined by $2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z}>1$, while $\mu_{\mathrm{r} 2}=5$ in region 2 where $2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z}<1$. In region $1, \mathrm{H}_{1}=50 a_{\mathrm{x}}-30 a_{\mathrm{y}}+20 a_{\mathrm{z}} \mathrm{A} / \mathrm{m}$.

Find:
a) $\mathrm{H}_{\mathrm{N} 1}$ (normal component of H_{1} at the boundary)
b) $\mathrm{H}_{\mathrm{T} 1}$ (tangential component of H_{1} at the boundary)
c) $\mathrm{H}_{\mathrm{T} 2}$ (tangential component of H_{2} at the boundary)
d) $\mathrm{H}_{\mathrm{N} 2}$ (normal component of H_{2} at the boundary)
e) θ_{1}, the angle between H_{1} and $a_{N 21}$
f) θ_{2}, the angle between H_{2} and $\mathrm{a}_{\mathrm{N} 21}$
(12) Three planar current sheets are located in free space as follows:
$-100 a_{\mathrm{x}} \mathrm{A} / \mathrm{m}$ at $\mathrm{z}=-1,200 a_{\mathrm{x}} \mathrm{A} / \mathrm{m}$ at $\mathrm{z}=0,-100 a_{\mathrm{x}} \mathrm{A} / \mathrm{m}$ at $\mathrm{z}=1$.
Let $w_{H}=(1 / 2) B . H J / m^{3}$, then find w_{H} for all z .

